Definitions | x:A B(x), b, x:AB(x), {i..j}, left + right, P Q, x:A. B(x), e@i.P(e), Type, , x. t(x), ES, IdLnk, a:A fp B(a), , Dec(P), e@i. P(e), <a, b>, @i discrete ds, , {x:A| B(x)} , Knd, A c B, @i stable state.P(state) , Atom$n, A, @i(x:T), xdom(f). v=f(x) P(x;v), case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , e loc e' , e c e', True, f(a), b, Top, IdDeq, f(x)?z, source(l), vartype(i;x), #$n, valtype(e), locl(a), kind(e), rcv(l,tg), sender(e), (state when e), x.A(x), mu'(P), do-apply(f;x), val(e), can-apply(f;x), f o' g, a < b, lnk_rcv{lnk_rcv_compseq_tag_def:ObjectId}(tg; l), {T}, SQType(T), strong-subtype(A;B), s ~ t, False, A B, lnk(k), lnk(e), let x,y = A in B(x;y), t.1, es-first-from(es;e;l;tg), isrcv(k), isrcv(e), P Q, P Q, discrete state@i, Unit, lnk-inv(l), tag(e), es-init(es;e), i j , as @ bs, Void, (e <loc e'), T, x dom(f), state@i, EqDecider(T), EOrderAxioms(E; pred?; info), EState(T), x,y. t(x;y), kindcase(k; a.f(a); l,t.g(l;t) ), Msg(M), type List, , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r s, constant_function(f;A;B), loc(e), kind(e), f g, State(ds), a = b, (x l), x : v, f g, discrete-weak-precond-send-p(es;T;A;l;tg;a;ds;P;f), weak-send-do-apply(es;T;l;tg;a;ds;f), , (discrete state after e), State(ds), t T, destination(l), loc(e), Id, s = t, P Q, E, x:A. B(x), (discrete state when e), P & Q, Outcome, -n, n+m, n - m, (e < e'), i j < k, n * m, suptype(S; T), discrete(i;x), S T, x:A.B(x), b | a, a ~ b, a b, a <p b, a < b, x f y, xL. P(x), (xL.P(x)), y is f*(x), r < s, q-rel(r;x), l_disjoint(T;l1;l2), e<e'.P(e), ee'.P(e), e<e'. P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), first(e), |g|, SqStable(P), a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), p =b q, i <z j, i z j, (i = j), x =a y, null(as), a < b, , =, a < b, =, =, [d], eq_atom$n(x;y), q_le(r;s), q_less(a;b), qeq(r;s), a = b, deq-member(eq;x;L), e = e', p q, p q, p q, tt, inr x , ff, inl x , e'e.P(e'), pred(e), |
Lemmas | subtype rel function, can-apply-mu', es-sender-causl, es-causle weakening locl, es-causle transitivity, es-causle-le, es-le-total, stable-implies4, es-causl wf, es-locl wf, not locl rcv, stable-implies3, bfalse wf, btrue wf, es-isrcv wf, decidable lt, decidable le, all functionality wrt iff, not functionality wrt iff, assert of bnot, sq stable from decidable, decidable all int seg, decidable assert, can-apply-compose', do-apply-mu', can-apply wf, p-compose' wf, ifthenelse wf, es-isconst wf, es-state-when-dstate-when, do-apply-compose', bnot wf, es-state-subtype-iff, es-state-subtype, id-deq wf, es-vartype wf, mu' wf, do-apply wf, es-le-loc, es-rcv-kind, es-lnk wf, fpf-cap wf, le wf, locl wf, es-kind wf, rcv wf, int seg properties, ge wf, nat ind tp, fpf wf, decidable wf, weak-send-do-apply wf, assert-eq-id, es-dstate-subtype, es-dstate-when wf, top wf, constant function wf, qle wf, cless wf, val-axiom wf, rationals wf, Msg wf, kindcase wf, EState wf, EOrderAxioms wf, deq wf, event system wf, es-valtype wf, es-val wf, es-state-when wf, es-state wf, es-state-subtype2, es-stable wf, es-le wf, es-causle wf, alle-at wf, es-dds wf, squash wf, IdLnk wf, IdLnk sq, es-loc-pred, not wf, false wf, es-loc-rcv, es-sender wf, lsrc wf, nat properties, unit wf, bool wf, member wf, es-dstate-after wf, es-dstate wf, subtype rel wf, es-loc wf, decl-state wf, iff wf, rev implies wf, es-isrcv-loc, es-kind-rcv, Id sq, ldst wf, Knd wf, guard wf, Knd sq, true wf, existse-at wf, int seg wf, assert wf, nat wf, Id wf, es-E wf |